
2014 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
SYSTEMS ENGINEERING (SE) TECHNICAL SESSION

AUGUST 12-14, 2014 – NOVI, MICHIGAN

MODEL-BASED PRODUCT LINE ENGINEERING –
ENABLING PRODUCT FAMILIES WITH VARIANTS

Matthew Hause

Atego Chief Consulting Engineer
Camelback Center, 2355 E. Camelback Rd. Suite 615, Phoenix, AZ 85016, USA

ABSTRACT
Product Lines are a group of related products manufactured or produced within or between

collaborating organizations. To effectively manage a product line, one needs to understand both the similarities

and differences between the different products and optimize the development lifecycle to leverage the

similarities, and concentrate development on the differences. ISO 26550:2013 Software & Systems Engineering

– Reference Model for Product Line Management & Engineering provides a standard for defining these

similarities and differences as well as the choices between them. Model-Based Systems and Software

Engineering (MBSE) using the Systems Modeling Language (SysML) and the Unified Modeling Language

(UML) provide a means of modeling systems and software. Bringing the two together allows users to model

product lines in industry standard formats. Combining these with an execution engine means that product

models can be created for specific products, whilst maintaining the original product line model. This provides

significant ROI for ground vehicles.

INTRODUCTION
Product lines have existed since the industrial revolution.

Manufacturers have long employed Product Line

Engineering (PLE) techniques to create a product line of

similar products using a common factory that assembles and

configures parts designed to be reused across the product

line. Automotive manufacturers create unique variations of a

car model using sets of carefully designed parts and a

factory specifically designed to configure and assemble

those parts. Henry Ford was one of the first manufacturers to

do this on a grand scale using assembly lines as well as

interchangeable parts. However, this capability evolved over

a period of time. Manufacturers would create a single

product for a specific purpose or customer. Variations of the

product would be created when customers’ needs changed or

to improve production. Eventually, these would evolve into

product lines. Often the management of the product line

depended on the skill and memory of the chief production

engineer. Over time, engineering techniques would be

employed to create lines of similar products by allowing for

specialization and customization as well as leveraging

interchangeable parts. This helped to drive down

manufacturing costs and increase customer choice.

However, component dependencies, mutually exclusive

components, component trade-off studies, etc. can be

difficult to manage, maintain, and document. These

challenges increase complexity and diminish the significant

ROI of PLE. Systems and Software Model-based Product

Lines are a similar paradigm. However, software product

variants were normally created by using conditional

compilation and similar build and runtime techniques. This

was error prone and difficult to visualize. It was also too

late in the process as the earlier you consider commonality

and variation in the Product lines lifecycle the greater the

ROI. Model-based techniques will be necessary to alleviate

these issues in the same way that they are revolutionizing

other aspects of systems and software engineering. Using

automotive examples, this paper will describe Model-based

Product Line Engineering, the process for creating product

lines, the 150% model, variant modeling and mapping

variation systems. Finally the paper will describe software

analysis, variant feature selection, product model creation,

and the benefits of this approach as applicable to the military

ground vehicle domain.

The Shift towards Models
Engineers prefer to create models of systems to visualize

systems. Model-Based Systems and Software Engineering

(MBSE) techniques have become the industry norm for

expressing systems and software architectures. The INCOSE

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model-based Product Line Engineering – Enabling Product Families with Variants. Matthew Hause, Atego

Page 2 of 7

SE Vision 2020 [9] defines MBSE as “the formalized

application of modeling to support system requirements,

design, analysis, verification and validation activities

beginning in the conceptual design phase and continuing

throughout development and later life cycle phases. MBSE

is part of a long-term trend toward model-centric approaches

adopted by other engineering disciplines, including

mechanical, electrical and software. In particular, MBSE is

expected to replace the document-centric approach that has

been practiced by systems engineers in the past and to

influence the future practice of systems engineering by fully

integrating into the definition of systems engineering

processes.” Applying MBSE typically provides significant

benefits over document centric approaches by enhancing

productivity and quality, reducing risk, and providing

improved communications among the system development

team. [9] Systems of systems are defined using Architecture

frameworks such as the Department of Defense Architecture

Framework (DoDAF) [1], systems architectures using the

Systems Modeling Language (SysML) [2], and [3] and

software architectures using the Unified Modeling language

(UML) [4].

ELEMENTS OF SYSML
SysML is more than a diagramming notation. It also

defines relationships between and properties of the elements

which are represented on those diagrams. While it is useful

to start by using a whiteboard or ‘drawing’ tool such as

Visio, to reap the rewards you will need to use a tool which

provides both the underlying database and the diagrams

which provide views onto that data. The SysML diagrams

can be used to specify system requirements, behavior,

structure and parametric relationships. These are known as

the four pillars of SysML. The system structure is

represented by Block Definition Diagrams and Internal

Block Diagrams (Blocks are defined later in this paper). A

Block Definition Diagram describes the system hierarchy

and system/component classifications. The Internal Block

Diagram describes the internal structure of a system in terms

of its Parts, Ports, Interfaces and Connectors. Parts are the

constituent components or “Parts” that make up the system

defined by the Block. Interfaces define the access points by

which Parts and external systems access the Block.

Connectors are the links or associations between the Parts of

the Block. Often these are connected via the Ports.

The behavior diagrams include the Use Case Diagram,

Activity Diagram, Sequence Diagram and State Machine

Diagram. A Use Case Diagram scopes the context and

provides a high-level description of the system functionality.

A Sequence Diagram represents the multiple interactions

between collaborating Parts of a system. The Activity

Diagram represents the flow of data and control between

Activities. Activities represent behaviors or functionality in

the system. This is similar to function block diagrams. The

State Machine Diagram describes the state transitions and

actions that a system or its parts performs in response to

events. The Four Pillars are shown in Figure 1

Figure 1. The Four Pillars of SysML

The Requirement Diagram captures requirements

hierarchies and the derivation, satisfaction, verification and

refinement relationships. The relationships provide the

capability to relate requirements to one another and to relate

requirements to system design model elements and test

cases. The requirement diagram can provide a bridge

between typical requirements management tools and the

system models or be used for model based requirements

engineering independently. The parametric diagram

represents constraints on system parameter values such as

performance, reliability and mass properties to support

engineering analysis. Finally, the Package Diagram is used

to organize the model. SysML includes an allocation

relationship to represent various types of allocation

including allocation of functions to components, logical to

physical components and software to hardware.

Structural Elements of SysML
The major structural element in SysML is the «block»

which extends the UML Structured Class. It is a general

purpose hierarchical structuring mechanism that abstracts

away much of the software-specific detail implicit in UML

structured classes. Blocks can represent any level of the

system hierarchy including the top-level system, a

subsystem, or logical or physical component of a system or

environment. A SysML block describes a system as a

collection of parts and connections between them that enable

communication and other forms of interaction. Ports provide

access to the internal structure of a block for use when the

object is used within the context of a larger structure. Two

diagrams are used to describe block relationships. The Block

Definition Diagram (bdd), similar to a UML class diagram,

is used to describe relationships that exist between blocks.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model-based Product Line Engineering – Enabling Product Families with Variants. Matthew Hause, Atego

Page 3 of 7

The Internal Block Diagram (ibd) is used to describe block

internals.

Modeling Systems
These modeling languages provide a means of expressing

systems and software architectures at all virtually of levels

of detail and abstraction. However, they lack a means of

expressing product lines and the variations between them.

Techniques such as inheritance and constraints have been

attempted, but they can only provide a set of variants to one

level, or quickly become too complex and complicated. To

express these concepts properly, it is necessary to integrate a

set of product line constructs into the model that are

specifically aimed at providing these capabilities. These

models can also become overly complex and large, defeating

key modeling objectives of abstraction and simplification.

The best solution to this problem is to break up the models

so that they represent individual sub-systems and sub-sub-

systems. The models can then be linked together to define

the whole system of interest. Two standards can help here:

the OMG Reusable Asset Specification (RAS) and the

OASIS OSLC Asset Management standard. This topic is

covered later in this paper.

Product Line Engineering
Product Line Engineering (PLE), also known as Product

Family Engineering (PFE) is a method that defines the

underlying architecture of an organization's product

platform. When applying a model-based approach to PLE,

variability modeling must be included.

Figure 2. Variability Diagram

Orthogonal Variability Modeling (OVM) provides the

ability to model systems and software products lines, their

variation points, variant diagrams, variants and their

variability relationships such as mutual exclusions and

product dependencies. OVM was developed by the

University Duisburg-Essen, PALUNO Institute [5] (K. Pohl

et al, 2005) and is now an ISO standard (ISO 26550: 2013,

Reference Model for System and Software Product Line

Engineering and Management) [7]. See also [12] and [13].

Through this modeling technique, product line engineers

have the ability to design product line variability options,

constraints and conflicts, (if any exist), and to pick their

desired end product. After modeling the variability in the

product line model, the engineer can create decision sets and

then choose to include or exclude variants for those

decisions sets.

Variant Modeling
The following variability elements comprise the variability

model.

 Variation Point - is a variable product line feature

whose options are defined through Variants.

 Variant -is an option that can be chosen for a

Variation Point.

 Dependency

o Variability Dependency - specifies that a

Variant is an option for a Variability Point.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model-based Product Line Engineering – Enabling Product Families with Variants. Matthew Hause, Atego

Page 4 of 7

o Excludes Dependency - specifies that the

inclusion of a Variant or Variation Point

requires the exclusion of another Variant

or Variation Point.

o Requires Dependency - specifies that the

inclusion of a Variant or Variation Point

requires the inclusion of another Variant or

Variation Point.

 Alternative Choice - groups a set of Variability

Dependencies and specifies the number of Variants

that need to be included.

 Artifact Dependency - this is a special Dependency

which specifies that an artifact (any base model item)

is associated with a Variation Point or Variant. It is

the link between the Variant Model and the System or

Software Model.

Figure 2 is an example of the notation making use of

several of the notational features.

In this example, all of the variants from the connectivity

variant point are optional, but for the USB, which is

mandatory. Optional Variability Dependencies can be

constrained by a minimum and maximum number of

possible choices. The syntax is <min>..<max> next to an arc

connecting the variability dependencies. In this case the

different types of Bluetooth. Variable Elements can be

linked to express:

 That the selection of one requires the selection of

another

 That the selection of one excludes the selection of

another

The scope can be from:

 variant to variant

 Variant to variation point

 Variation point to variation point

In Figure 2, the selection of the Bluetooth connectivity

requires the selection of the Bluetooth version.

Integrating OVM and SysML
The Variant Model and the Base System or Software

Family Model together represent the Product Line Model,

also frequently referred to as the 150% Model or the

Overloaded Bill-of-Materials (BoM). This is a full

representation of the product line, with all of its

commonality and variation.

To enable this, OVM elements can be integrated into

SysML or UML (the ‘Base’ Family Model) and then linked

with any other models elements. Connections between

Variable Elements and the Base Family Model allows

engineers to model which model elements are in the product

family model due to a specific variant or variation point.

Artifact Dependencies can be created to all types of base

model elements:

 Structural such as UML classes, SysML blocks or

parts

 Behavioral such as Use Cases, Transitions or States

In order to express this dependency, base model elements

can be shown on Variability Diagrams and Variable

Elements can be shown on Base Model Diagrams. Figure 3

shows a simple model of the options for a car engine. The

triangle is the variant point representing the engine type. The

alternate choices (dashed lines) link to the two engine

variants as Efficient and Fast. The multiplicity of "1..1"

means that at least one engine and no more can be chosen.

The artifact dependencies are linked to the diesel and

gasoline engines modeled as SysML blocks.

VP

V V

«BlockProperty»
«component»

Diesel Engine

«BlockProperty»
«component»

Gasoline Engine

Engine

VP

Efficient

V

Fast

V
1..1

var 04 Engine Variant Diagram

Figure 3. Engine Type Decision Tree

This Variation differs from SysML inheritance in that it

not only indicates the choices which can be made but it also

allows engineers to use a separate (or orthogonal)

nomenclature for the variations and choices to that used in

the more technical Base Model. This is particularly useful

when customers, managers or marketing teams will make the

product decisions, based on the rules encoded by the product

line engineer. Also, complex multi-level decision sets are

impossible to model in the base modeling languages. In

order to properly express the model variability as opposed to

the model structure, an orthogonal modelling construct is

necessary. This is the purpose of OVM.

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model-based Product Line Engineering – Enabling Product Families with Variants. Matthew Hause, Atego

Page 5 of 7

VP

VP

V V V

V V

bdd 06 Full Variation Tree
«block»

«component»

Transmission

flowPorts
«FlowPort» in fp2 : Boolean

proxyPorts
«ProxyPort» : Spline1
«ProxyPort» : Bolt2
«ProxyPort» : UJoint1
«ProxyPort» : Flange
«ProxyPort» : Spiggot
«ProxyPort» : Bolt

ManuallyShiftedTransmission

proxyPorts
«ProxyPort» : Bolt2
«ProxyPort» : UJoint1
«ProxyPort» : Spiggot
«ProxyPort» : Bolt
«ProxyPort» : Flange
«ProxyPort» : Spline1

AutomaticTransmission

proxyPorts
«ProxyPort» : Bolt2
«ProxyPort» : UJoint1
«ProxyPort» : Flange
«ProxyPort» : Bolt
«ProxyPort» : Spiggot
«ProxyPort» : Spline1

SemiAutomaticTransmission

Transmis-
sion type

VP

Number-
OfGears

VP

Luxury

V

Medium Comfort

V

Regular

V

5Gears

V

6Gears

V

«requires»

1..1

1..1

Figure 4. Transmission Selection

Figure 4 shows the transmission with subtypes of

automatic, semi-automatic, and manual. The variation point

is transmission type and the variations are luxury

(automatic), medium (semi-automatic), and regular

(manual). If regular is chosen, then the additional variation

point of number of gears is required. The user must choose

between 5 or 6 gears. This chain of decisions can become

quite complex, and is only possible by using a set of

constructs that is orthogonal to the MBSE language and fully

integrated with it. Together, these form Model-Base Product

Line Engineering or MB-PLE.

MBSE + PLE = MB-PLE
In order to define the product line and its various options,

it is necessary to define a model called the 150% model.

This is the case in Figures 3 and 4 as no car contains two

engines and three different types of transmission. The 150%

model contains the system along with all of its possible sub-

system components (possibly from separate but connected

models), interfaces, behavior, requirements, etc. OVM

provides the ability to define a variation point of Engine, and

then define that one and only one of the possible engines

above can exist in any actual product. Dependencies

between engine type and transmission type, exclusive or

required relationships, etc. can also be defined. In addition,

variants between requirements can also be defined. A

particular system choice will have specific requirements

corresponding to each variant. By linking the requirements

in this way, the resulting requirements traceability and

compliance can be maintained. In other words, product line

feature selection will not only result in a 100% product

model but also the 100% subset of the product line’s 150%

of requirements. Test scripts and sequences can also be

included. This significantly changes the paradigm, enabling

MB-PLE to cover the complete range of systems

engineering concerns. However, in order to take advantage

of the product line model, the variability needs to be

“executable” resulting in a product model.

Executable Variability
Executable variability involves navigating through the

variation points and selecting the desired elements. Figure 5

shows an example variant selector interface.

Figure 5. Example Variability Choices for Vehicle

Figure 5 shows the decisions made by the product

customer, manager or stakeholder for the required product

model. The decision making process shown in Figure 5 is in

progress with decisions such as car type and Connectivity

having been made and Screenlock and others as undecided.

Having selected the required elements, a product model can

be automatically generated from the product line model. The

150% model is used to contain the base model and all the

variants. Product models can then be created from this

model and follow their own natural lifecycle. To maintain

consistency, the 150% model should always be viewed as

the “master” model. If new assets are created for the product

model, these can be incorporated into the 150% model for

use in future product lines. Keeping track of the different

assets and determining which models use which assets can

become problematic and complex. In order to facilitate this,

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model-based Product Line Engineering – Enabling Product Families with Variants. Matthew Hause, Atego

Page 6 of 7

there needs to be a means of defining, reusing and sharing

the assets between models.

Reusing Assets
Each of these components in a system can be a complex

system of systems in and of itself. However, often the

internal details of these systems are not pertinent or can

increase the size of the model. In addition, it can be

advantageous or even mandatory to reuse the components

without changing them. There may be several different

versions of evolutions of the systems as well, making the

150% model overly complex. Consequently, a mechanism is

required to manage and reuse the model assets as necessary.

The Reusable Asset Specification
The OMG Reusable Asset Specification (RAS) is used for

defining reusable assets, their interfaces, characteristics and

supporting elements [8]. There are three key dimensions that

describe reusable assets: granularity, variability (and

visibility), and articulation. The granularity of an asset

describes how many particular problems or solution

alternatives a packaged asset addresses. The visibility can

vary from black-box assets, whose internals cannot be seen

and are not modifiable, to white box assets which are visible

and modifiable. The articulation dimension describes the

degree of completeness of the artifacts in providing the

solution. Asset specifications can also include supporting

documentation, requirements addressed, interfaces, etc.

Instead of a “mega-model” approach, a standards-based

“model of models” approach is what is necessary.

Reusable SysML
Combining SysML and RAS provides a Model of Models

approach with the main model specifying the system of

systems and referencing assets in various levels of detail.

The models specified by these assets can be referenced when

detailed analysis is required, or hidden when a SoS

viewpoint is required, allowing the analyst to see the forest

through the trees. To extend the metaphor further, details of

the individual trees can also be examined when necessary.

The variability of the assets in the library is normally at the

black-box level. Included with the asset is a description,

interface, references, values, etc. This level of detail is

appropriate for reuse of the system as a black box

component in a system of systems architecture. However,

since the requirements, interfaces, behavior, published and

consumed events, included parts, references and parametric

characteristics are also included, quantitative as well as

qualitative analysis can be done on the asset to determine if

it is the best fit for the problem at hand. The inclusion of

these features increases the articulation or degree of

completeness of the artifacts. Included with the asset is the

specification of the source model from which the asset

definition was taken. Finally, the individual assets can

contain variability elements as well. For example, a separate

model could be created containing all the engine variants

and choices between them. These can be reused in the SoS

model along with the lower level models. Figure 6 shows an

example structure of a reusable asset library, a set of asset

models, a 150% model and a set of product models.

Figure 6. Asset Reuse.

In Figure 6, the models at the top of the figure, the higher-

level models are the 150% and product models. These

models reuse the assets from the asset library shown in the

center section Links via Assets. The Lower Level Models

contain one or more assets that have been shared in the asset

library. Additionally, these assets can also contain

variability. Consequently, the asset itself can contain a set of

choices to define the correct component to meet the

requirements for a specific solution space.

Leveraging Standards
Together, these standards and approaches provide the

ability to implement Model-based Product Line Engineering

(MB-PLE) at all levels of architecture and throughout the

various phases of the development cycle. Independent

survey results have shown that applying MB-PLE

approaches can reduce total development costs by 62% and

deliver 23% more products on time. In today’s budget

constrained world these are numbers that demonstrate a

return on investment that is worth investigating [10], and

[11].

Conclusion
As systems and models of systems become increasingly

complex, we need to discover new ways of organizing the

models and the decisions made while creating them. The

combination of SysML, Product Line Engineering using the

Object Variability Modeling and the Reusable Asset

Specification provide Model-Based Product Line

Engineering. This enable engineers a means to reuse assets

while making value-based decisions on system

Proceedings of the 2014 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Model-based Product Line Engineering – Enabling Product Families with Variants. Matthew Hause, Atego

Page 7 of 7

configuration. Together, these provide a demonstrable ROI

that will reduce development time and costs and help

automotive engineers build better systems.

REFERENCES

[1] DoDAF DoD CIO, 2012, DoD Architecture Framework

Version 2.02, DoD Deputy Chief Information Officer,

Available online at

http://dodcio.defense.gov/dodaf20/dodaf20_pes.aspx,

accessed June, 2014.

[2] Friedenthal, S., Moore, A., Steiner, R. Practical Guide to

SysML: The Systems Modeling Language Second

Edition, Morgan Kaufman, Oct 31, 2011

[3] Object Management Group (OMG), June, 2012, OMG

Systems Modeling Language (OMG SysML™), V1.3,

OMG Document Number: formal/2012-06-01,

http://www.omg.org/spec/SysML/1.3/PDF/, Accessed

November, 2013

[4] Object Management Group (OMG), 2007a. Unified

Modeling Language: Superstructure version 2.1.1 with

change bars ptc/2007-02-03. [online] Available from:

http://www.omg.org [Accessed September 2007].

[5] PALUNO, The Ruhr Institute of Software Technology

Software Product Line Engineering (Pohl et al - Springer

2005)

[6] ISO 15288:2008 Systems Engineering standard covering

processes & life cycle stages.

[7] ISO 26550:2013 for Software & Systems Engineering –

Reference Model for Product Line Management &

Engineering.

[8] OMG, 2005, Reusable Asset Specification (RAS),

Version 2.2, http://www.omg.org/spec/RAS/2.2/PDF,

formal/05-11-02

[9] INCOSE SE Vision 2020, September 2007, Available at

http://www.incose.org/ProductsPubs/pdf/SEVision2020_

20071003_v2_03.pdf, Accessed Nov 2013

[10] EMF 2013 Independent Survey Results from 667

Systems Engineering respondents,

http://www.embeddedforecast.com/EMF_freewhitepaper

s43.php

[11] Linda Northrop, SEI SSPL 2008-2012),

http://www.sei.cmu.edu/library/assets/spl-essentials.pdf

 [12] Seven Years of Orthogonal Variability Model -

Experiences and Insights” (A. Heuer et al. 2010)

[13] Intro to OVM at the SysML RTF” (V. Stricker, 2012)

